
Supplementary: A Time-Dependent Inclusion-Based Method for
Continuous Collision Detection between Parametric Surfaces
XUWEN CHEN, School of Intelligence Science and Technology, Peking University, China
CHENG YU, School of Intelligence Science and Technology, Peking University, China
XINGYU NI, School of Computer Science, Peking University, China
MENGYU CHU, State Key Laboratory of General Artificial Intelligence, Peking University, China
BIN WANG∗, State Key Laboratory of General Artificial Intelligence, BIGAI, China
BAOQUAN CHEN∗, State Key Laboratory of General Artificial Intelligence, Peking University, China

1 INCLUSION INTERSECTION DETECTION
Our time-dependent inclusion-based CCDmethod is built upon the
subdivision framework, where in each iteration we detect potential
collisions between two subpatches by conservatively finding the
time subinterval when the two time-dependent inclusions of the
subpatches intersect during the given time step [𝑡 l, 𝑡u]. Specifically,
we perform inclusion intersection detection by solving Eq. (18), as
described in Alg. 3 in Section 4. It mainly relies on solving an in-
equality formed as

min
0≤𝛼<𝑀1

𝑎𝛼 𝑡 + 𝑏𝛼 ≤ max
0≤𝛽<𝑀2

𝑐𝛽𝑡 + 𝑑𝛽 , (S1)

where on each side the max/min operator is applied on a set of lin-
ear functions with respect to 𝑡 . As illustrated in Fig. 3, we solve this
inequality by first compute the convex/concave boundary contour
of the max/min function and then find the time subinterval where
the min contour exceeds the max contour. We here elaborate our
implementation of the algorithm for these two subroutines.

1.1 contour computation
The computation of the max/min contour is indeed to select a sub-
set of the lines that makes up the max/min contour of the origi-
nal set. We use the index sets I ⊂ {0, 1, . . . , 𝑀1 − 1} and J ⊂
{0, 1, . . . , 𝑀2 − 1} to indicate the selected lines that forms the con-
tour of the max function and min function, respectively.
Without loss of generality, we focus on the computation of the

max contour. As shown in Alg. S1, after sorting and removing the
duplicates, we traverse the lines in the original set with the sub-
script 𝛼 and store the selected lines in the stack I. When dealing
with the 𝛼-th line, we (1) first recursively check whether the pre-
viously selected line still forms part of the max contour if it were
added and (2) then check whether it actually forms part of the max
contour and should be added into the stack. Let Γ = SizeOf (I) − 1

∗corresponding authors

Authors’ addresses: Xuwen Chen, pku_xwchen@163.com, School of Intelligence Sci-
ence and Technology, Peking University, Beijing, China; Cheng Yu, chengyupku@
pku.edu.cn, School of Intelligence Science and Technology, Peking University, Beijing,
China; Xingyu Ni, nixy@pku.edu.cn, School of Computer Science, Peking University,
Beijing, China; Mengyu Chu, mchu@pku.edu.cn, State Key Laboratory of General Ar-
tificial Intelligence, Peking University, China; Bin Wang, binwangbuaa@gmail.com,
State Key Laboratory of General Artificial Intelligence, BIGAI, Beijing, China; Bao-
quan Chen, baoquan@pku.edu.cn, State Key Laboratory of General Artificial Intelli-
gence, Peking University, Beijing, China
.

ALGORITHM S1: Max contour Computation
Input: A set of lines denoted by slopes and intercepts

{𝑎𝛼 𝑡 + 𝑏𝛼 | 0 ≤ 𝛼 < 𝑀1}, the candidate interval [𝑡 l, 𝑡u]
Output: An index set I.

1 Sort the lines in ascending order by slope;
2 Erase lines with same slope but smaller intercept;
3 Initialize the index set of the selected lines I ← {0};
4 foreach 𝛼 do
5 do
6 if Φ < 0 then
7 break
8 else
9 pop the last index in I

10 end
11 while I is not empty;
12 if I is empty or 𝜙 < 0 then
13 push 𝛼 into I
14 end
15 end
16 return I;

so 𝛼Γ denotes the index of the last selected line in I (the top ele-
ment in the stack). We formalize the two tests as follows.

Test (1) equals to whether the 𝛼-th line intersects with the 𝛼Γ−1-
th line after the 𝛼Γ-th line does, as shown in Fig. S1. If so, the 𝛼Γ-th
line should be popped out of I. When there is only one line left in
the stack, the ”𝛼Γ−1-th line” is chosen as 𝑡 − 𝑡 l = 0. So the whole
test is interpreted as Φ < 0, where

Φ =

{
(𝑎𝛼Γ − 𝑎𝛼Γ−1) (𝑏𝛼 − 𝑏𝛼Γ−1) − (𝑎𝛼 − 𝑎𝛼Γ−1) (𝑏𝛼Γ − 𝑏𝛼Γ−1), Γ > 0, (S2a)

(𝑎𝛼 − 𝑎𝛼Γ)𝑡
l + (𝑏𝛼 − 𝑏𝛼Γ), Γ = 0. (S2b)

The two cases are depicted in Fig. S1. If the test passes, the Γ-th line
is popped and the test continues for the next top line in the stack
until the stack is cleared or the test fails.

Test (2) equals to whether the 𝛼-th line intersects the 𝛼Γ-th line
before 𝑡u, as shown in Alg. S2. This test is interpreted as 𝜙 < 0,
where

𝜙 = (𝑎𝛼Γ − 𝑎𝛼)𝑡u + (𝑏𝛼Γ − 𝑏𝛼). (S3)
If the test passes, the 𝛼-th line is selected as constructing part of
the max contour.

We point out that we exclude equal sign in both inequality tests
in order to leave out redundant lines.

The computation of the min contour shares a similar process,
with a totally reversed sorting and a little revision in computing

HTTPS://ORCID.ORG/0000-0002-9798-4151
HTTPS://ORCID.ORG/0009-0003-8639-6850
HTTPS://ORCID.ORG/0000-0003-1127-2848
HTTPS://ORCID.ORG/0000-0002-7358-433X
HTTPS://ORCID.ORG/0000-0001-9496-772X
HTTPS://ORCID.ORG/0000-0003-4702-036X
https://orcid.org/0000-0002-9798-4151
https://orcid.org/0009-0003-8639-6850
https://orcid.org/0000-0003-1127-2848
https://orcid.org/0000-0002-7358-433X
https://orcid.org/0000-0001-9496-772X
https://orcid.org/0000-0003-4702-036X
https://orcid.org/0000-0003-4702-036X

2 • Xuwen Chen, Cheng Yu, Xingyu Ni, Mengyu Chu, Bin Wang, and Baoquan Chen

𝑡𝑡! 𝑡" 𝑡𝑡! 𝑡" 𝑡𝑡! 𝑡" 𝑡𝑡! 𝑡"

case1: 	𝑆𝑖𝑧𝑒𝑂𝑓(ℐ) > 1 case2: 	𝑆𝑖𝑧𝑒𝑂𝑓 ℐ = 1

Fig. S1. Two different cases of testing whether the top line in the stack should be popped. The solid lines denote the lines in the stack and the dotted line
denotes the line being checked. In each case, the test fails in the left figure and passes in the right figure.

𝑡
𝑡! 𝑡"

𝑡
𝑡! 𝑡"

Fig. S2. Testing whether the top line in the stack should be popped. The
solid lines denote the lines in the stack and the dotted line denotes the line
being checked. The test passes in the left figure and fails in the right figure.

ALGORITHM S2: Left Endpoint of contour Intersection
Input: A max contour denoted by {𝑎𝛼𝛾 𝑡 + 𝑏𝛼𝛾 | 𝛼𝛾 ∈ I}, a min

contour denoted by {𝑐𝛽𝜆 𝑡 + 𝑑𝛽𝜆 | 𝛽𝜆 ∈ J}, the candidate
interval [𝑡 l, 𝑡u]

Output: The left endpoint of the intersection interval of the two
contours

1 if 𝜓 < 0 then
2 return 𝑡 l;
3 end
4 do
5 if 𝑎𝛼𝛾 ≥ 𝑐𝛽𝜆 then break;
6 if Ψmax < 0 then
7 if Ψmin < 0 then
8 return −(𝑏𝛼𝛾 − 𝑑𝛽𝜆)/(𝑎𝛼𝛾 − 𝑐𝛽𝜆) ;
9 else
10 𝜆 ← 𝜆 + 1;
11 end
12 else
13 𝛾 ← 𝛾 + 1;
14 end
15 while 𝛾 <SizeOf (I)and 𝜆 <SizeOf (J);
16 return null;

Φ and 𝜙 as

Φ =

{
(𝑎𝛼Γ − 𝑎𝛼Γ−1) (𝑏𝛼 − 𝑏𝛼Γ−1) − (𝑎𝛼 − 𝑎𝛼Γ−1) (𝑏𝛼Γ − 𝑏𝛼Γ−1), Γ > 0, (S4a)

−[(𝑎𝛼Γ − 𝑎𝛼)𝑡
l + (𝑏𝛼Γ − 𝑏𝛼)], Γ = 0, (S4b)

𝜙 = −[(𝑎𝛼Γ − 𝑎𝛼)𝑡u + (𝑏𝛼Γ − 𝑏𝛼)] . (S5)

1.2 contour intersection computation
After obtaining the max-contour subset {(𝑎𝛼𝛾 , 𝑏𝛼𝛾)}𝛼𝛾 ∈I and the
min-contour subset {(𝑐𝛽𝜆 , 𝑑𝛽𝜆)}𝛽𝜆∈J sorted by slope in ascending
and descending order, respectively, we simultaneously traverse the
max-contour and min-contour subsets by traversing the index sets
I and J using subscripts𝛾 and 𝜆 individually. Let Γ = SizeOf (I)−
1 and Λ = SizeOf (J) − 1. Since the max contour is convex and the
min contour is concave, the intersection would be null or a single
connected interval of 𝑡 . So next we explain how to find the left
end of this interval or achieve the conclusion that intersection does
not exist. The process for finding the right end follows the same
approach with the traversing order reversed.

As shown in Alg. S2, to find the left end is to find where the two
segment contours first intersect. If the max contour starts at a value
below the value of themin contour at the start of the candidate time
interval 𝑡 l, satisfying

𝜓 = (𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡
l + (𝑏𝛼𝛾 − 𝑑𝛽𝜆) < 0, (S6)

we can directly set the left end as 𝑡 l, otherwise we continue to
sweep the contours. If the 𝛼𝛾 -th max-contour line and the 𝛽𝜆-th
min-contour line intersect, the intersection point must (1) lie be-
fore the 𝛼𝛾 -th line segment ends and (2) lie before the 𝛽𝜆-th line
segment ends.

Condition (1) is checked by comparing the intersection of the
𝛽𝜆-th min-contour line with the 𝛼𝛾 -th max-contour line and with
the𝛼𝛾+1-thmax-contour line respectively. ”The𝛼𝛾+1-thmax-contour
line” is set as 𝑡−𝑡u = 0when there is no succeeding line after the 𝛼𝛾 -
th line. Though there exists three different cases depicted in Fig. S3,
condition (1) is satisfied if and only if Ψmax < 0, where

Ψmax =

{
(𝑎𝛼𝛾+1 − 𝑐𝛽𝜆) (𝑏𝛼𝛾 − 𝑑𝛽𝜆) − (𝑎𝛼𝛾 − 𝑐𝛽𝜆) (𝑏𝛼𝛾+1 − 𝑑𝛽𝜆), 𝛾 < Γ, (S7a)

(𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡
u + (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝛾 ≥ Γ. (S7b)

Condition (2) is satisfied if and only if Ψmin < 0 where

Ψmin =

{
(𝑎𝛼𝛾 − 𝑐𝛽𝜆+1) (𝑏𝛼𝛾 − 𝑑𝛽𝜆) − (𝑎𝛼𝛾 − 𝑐𝛽𝜆) (𝑏𝛼𝛾 − 𝑑𝛽𝜆+1), 𝜆 < Λ, (S8a)
(𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡

u + (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝜆 ≥ Λ. (S8b)

Once the two conditions are both satisfied, we calculate the left
end of the intersection by

𝑡 = −
𝑏𝛼𝛾 − 𝑑𝛽𝜆
𝑎𝛼𝛾 − 𝑐𝛽𝜆

. (S9)

If test for condition (1)/(2) fails, i.e., the horizontal coordinate of the
intersection point gets beyond the end point of max-contour/min-
contour segment, we add 𝛾/𝜆 by one, moving on to the next line

Supplementary: A Time-Dependent Inclusion-Based Method for Continuous Collision Detection between Parametric Surfaces • 3

𝑎!! 	𝑡 + 𝑏!! 𝑎!!"#𝑡 + 𝑏!!"#

𝑐"$𝑡 + 𝑑"$

case1: 𝑐"$ > 𝑎!!"# > 𝑎!!

𝑐"$𝑡 + 𝑑"$ 𝑐"$𝑡 + 𝑑"$

case2: 𝑐"$ = 𝑎!!"# > 𝑎!! case3: 𝑎!!"# > 𝑐"$ > 𝑎!!

𝑎!! 	𝑡 + 𝑏!! 𝑎!!"#𝑡 + 𝑏!!"# 𝑎!! 	𝑡 + 𝑏!! 𝑎!!"#𝑡 + 𝑏!!"#

Fig. S3. Three different cases when the 𝛾 -th max-contour line and the 𝜆-th min-contour line intersect before the 𝛾 -th segment ends.

in the max/min contour. We recursively conduct the tests until 𝑐𝛽𝜆
becomes no larger than 𝑎𝛼𝛾 or we have checked all the lines in
either of the two sets before we find an intersection, indicating no
intersection happens between the two contours.
If the left end exists, we then compute the right end of the inter-

section interval using a similar algorithm. The main difference is
that the sweep is done from end to start. Each time when condition
(1)/(2) fails, we subtract 𝛾/𝜆 by one, moving on to the previous line
in the max/min contour. The formalized conditions are written as

𝜓 = (𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡
u + (𝑏𝛼𝛾 − 𝑑𝛽𝜆), (S10)

Ψmax =

{ (𝑎𝛼𝛾 − 𝑐𝛽𝜆) (𝑏𝛼𝛾−1 − 𝑑𝛽𝜆) − (𝑎𝛼𝛾−1 − 𝑐𝛽𝜆) (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝛾 − 1 ≥ 0, (S11a)

(𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡
u + (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝛾 − 1 < 0, (S11b)

Ψmin =

{ (𝑎𝛼𝛾 − 𝑐𝛽𝜆) (𝑏𝛼𝛾 − 𝑑𝛽𝜆−1) − (𝑎𝛼𝛾 − 𝑐𝛽𝜆−1) (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝜆 − 1 ≥ 0, (S12a)

(𝑎𝛼𝛾 − 𝑐𝛽𝜆)𝑡
u + (𝑏𝛼𝛾 − 𝑑𝛽𝜆), 𝜆 − 1 < 0. (S12b)

1.3 Analysis
Thewhole algorithmof solving Eq. (S1) for the feasible time interval
is at 𝑂 (𝑀1 log𝑀1 + 𝑀2 log𝑀2). Specifically, we compute the max

contour by first sorting the line set and then sweeping the set once,
which takes 𝑂 (𝑀1 log𝑀1) and 𝑂 (𝑀1) time, respectively. Similarly,
the sorting and sweeping during computing the min contour takes
𝑂 (𝑀2 log𝑀2) and 𝑂 (𝑀2) time, respectively. Then we compute the
contour intersection by sweeping the two contour subsets simulta-
neously, which takes𝑂 (𝑀1 +𝑀2) time. Therefore the bottleneck of
time complexity is the sorting process during constructing the max
contour and the min contour.

We have tried different ways of constructing the criteria Φs and
Ψs, for example, using different intersection points to determine the
relationship between the lines, and using the division form of the
intersection points without rearranging them into multiplication.
All the implementation ways have the same time complexity. We
find that such little modifications hardly harm the performance of
the overall method.We believe that any reasonable implementation
of the sorting-and-sweeping algorithm can work as well as ours.

	1 inclusion intersection detection
	1.1 contour computation
	1.2 contour intersection computation
	1.3 Analysis

