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Fig. 1. We solve the CCD problem between a bunny model composed of
linear triangles and a torus model composed of rational Bézier patches.
The trajectories are obtained by discretizing a rigid motion into time-linear
pieces. Our time-dependent inclusion-based method treats all geometric
primitives in an efficient and unified way.

Continuous collision detection (CCD) between parametric surfaces is typi-

cally formulated as a five-dimensional constrained optimization problem.

In the field of CAD and computer graphics, common approaches to solv-

ing this problem rely on linearization or sampling strategies. Alternatively,

inclusion-based techniques detect collisions by employing 5D inclusion

functions, which are typically designed to represent the swept volumes

of parametric surfaces over a given time span, and narrowing down the

earliest collision moment through subdivision in both spatial and temporal

dimensions. However, when high detection accuracy is required, all these

approaches significantly increases computational consumption due to the
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high-dimensional searching space. In this work, we develop a new time-

dependent inclusion-based CCD framework that eliminates the need for

temporal subdivision and can speedup conventional methods by a factor

ranging from 36 to 138. To achieve this, we propose a novel time-dependent

inclusion function that provides a continuous representation of a moving

surface, along with a corresponding intersection detection algorithm that

quickly identifies the time intervals when collisions are likely to occur. We

validate our method across various primitive types, demonstrate its efficacy

within the simulation pipeline and show that it significantly improves CCD

efficiency while maintaining accuracy.

CCS Concepts: • Computing methodologies→ Physical simulation; •
Applied computing→ Physics.

Additional Key Words and Phrases: parametric surface, continuous collision

detection, interval analysis
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1 INTRODUCTION
Continuous collision detection (CCD) has long been a critical proce-

dure in elastodynamic simulation and engineering manufacturing.

While CCD techniques for linear triangular meshes have been exten-

sively studied [Bridson et al. 2002; Brochu et al. 2012; Provot 1997;

Tang et al. 2014; Teschner et al. 2005; Wang et al. 2021], there has

been relatively limited progress in CCD for nonlinear surfaces, such

as Bézier and NURBS surfaces. These surfaces are commonly used

in computer-aided design (CAD) but present greater mathematical

complexity in CCD problems due to their high-order nature.

A 3D parametric surface patch, denoted as 𝑺 (𝑢, 𝑣) ⊂ R3
, repre-

sents a mapping from a two-dimensional parameter space to the

three-dimensional world space. When this surface patch is dynamic,

it corresponds to a time-dependent mapping 𝑺 (𝑢, 𝑣, 𝑡). The CCD

problem between two parametric surfaces is typically formulated

as a five-variable constrained optimization problem [Snyder et al.

1993; Von Herzen et al. 1990]

min

𝑡,𝑢1,𝑣1,𝑢2,𝑣2
𝑡 , (1)

𝑠 .𝑡 . 𝑺1 (𝑢1, 𝑣1, 𝑡) = 𝑺2 (𝑢2, 𝑣2, 𝑡), (2)

0 ≤ 𝑢1, 𝑣1, 𝑢2, 𝑣2 ≤ 1, (3)

0 ≤ 𝑡 ≤ Δ𝑇 . (4)

The solution (𝑡∗, 𝑢∗
1
, 𝑣∗

1
, 𝑢∗

2
, 𝑣∗

2
) to this problem represents to the

earliest time of impact (ToI) within the time interval [0,Δ𝑇 ], along
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with the parameter coordinates of the collision point on each surface.

If no solution exists, it implies that no collision occurs between the

two surfaces within [0,Δ𝑇 ].
In today’s CAD and graphics society, solving CCD problems for

high-order parametric surfaces often resorts to either (1) lineariza-

tion techniques [Ferguson et al. 2023; Xiong et al. 2023], which

convert parametric surfaces into linear triangular meshes, or (2)

sampling techniques, [Lu 2011; Lu and Zheng 2014] which reduce

the problem to CCD between points and a surface. However, since

linearized meshes and sampled points only approximate the origi-

nal surface, the solutions obtained using these techniques are often

imprecise, leading to a significant number of false positives (FP)

or false negatives (FN). To achieve the level of precision required

in high-precision simulations or for large deformations, the reso-

lution of triangulation or sampling strategy must be significantly

increased, resulting in substantial inefficiencies. Additionally, a few

studies have directly addressed surface-surface CCD problems, in-

cluding inclusion-based methods [Snyder et al. 1993; Von Herzen

et al. 1990] and sum-of-squares programming [Zhang et al. 2023a].

Inclusion-based methods detect the intersection between inclusion

functions of surfaces to provided a conservative estimate of colli-

sion and recursively subdivides the parameter space to locate the

solution. However, since the parameter space of the CCD problem

is five-dimensional, this method suffers from a rapid increase in

computational time due to the dimensionality of the subdivision.

On the other hand, Sum-of-squares programming delicately relaxes

the CCD constraints to make them semidefinite and solvable with

existing mathematical tools. However, it lacks explicit control over

the precision or certification of the solution. Furthermore, as our

experiments have shown, it is significantly slower than inclusion-

based methods. In summarize, the common drawback of all these

methods is their significant time consumption.

In this work, we propose a novel inclusion-based method for

efficiently solving CCD problems on parametric surfaces. Unlike

traditional approaches that use inclusion functions to bound the

entire volume swept by the surface within a time step and then sub-

divide the five-dimensional space [Snyder et al. 1993; Von Herzen

et al. 1990], our method extracts 𝑡 from the parameter space and

perform subdivision only in the four-dimensional parameter space

(𝑢1, 𝑣1, 𝑢2, 𝑣2). To determine the collision time, we introduce a new

type of time-dependent inclusion function, along with an algorithm

that explicitly computes the intersection period of these inclusion

functions. This reduction in problem dimensionality, combined with

the rapid narrowing of the candidate temporal domain, significantly

decreases computational time and enhances the scalability of our

inclusion-based framework, especially as precision requirements

increase. Moreover, our method eliminates the need for auxiliary

conditions and case-specific discussions, which are often necessary

in previous works [Snyder et al. 1993; Zhang et al. 2023a]. Our

method is applicable to any surface primitive that satisfies (1) the

convex-hull property, where the entire surface lies within the con-

vex hull formed by its control points, and (2) the linear-trajectory

assumption, where each control point moves at a constant speed

during one time step.

Our contributions are summarized as follows:

(1) We introduce a novel time-dependent inclusion function for

deforming surfaces and design an algorithm to determine the

time intervals during which these functions overlap.

(2) Building on this, we propose a novel paradigm for solving

CCDbetween high-order parametric surfaces, achieving speedups

ranging from 36 to 138. The core innovation lies in explicitly

calculating and excluding time from the subdivision frame-

work, thereby reducing problem dimensionality and enabling

faster convergence in the temporal domain.

(3) We validate our framework across a variety of geometry prim-

itives and collision scenarios, demonstrating significant im-

provements in both computational time and accuracy.

2 RELATED WORK
CCD for high-order parametric surfaces. The successful applica-

tion of Isogeometric Analysis (IGA) [Cottrell et al. 2009; Hughes

et al. 2005] across various engineering domains has spurred in-

depth investigations into collision detection methods [Cardoso and

Adetoro 2017; Hughes et al. 1996] for nonlinear surfaces. Lineariza-
tion techniques [Buchenau and Guthe 2021; Suwelack et al. 2013;

Xiong et al. 2023] are widely employed in research areas such as

CAD, CAE and computer graphics. These techniques transform non-

linear parametric surfaces into linear triangular meshes, enabling

the application of well-established CCD algorithms designed for

linear meshes[Brochu et al. 2012; Wang et al. 2022, 2021, 2015]. On

the other hand, Sampling techniques [Galligo and Pavone 2006; Lu

2011; Lu and Zheng 2014; Zhang et al. 2023b] involve sampling

points on one surfaces (e.g., fixing 𝑢1, 𝑣1), transforming the problem

into detecting collisions between these sampled points and another

surface. This approach reduces the optimization problem from five-

variable to three, making it more tractable for nonlinear equation

solvers. However, both linearization and sampling techniques yield

only rough approximate solution. Recently,Sum-of-squares program-
ming (SOSP) [Marschner et al. 2021; Zhang et al. 2023a] has emerged

as a promising alternative, which directly addresses the nonlinear

optimization problem for CCD. SOSP relaxes the collision detec-

tion constraints as sum-of-squares (SOS) polynomials, which can

then be solved through existing mathematical tools for semidef-

inite programming(SDP). The exact recovery certificate is often

associated with the order of the SOS relaxation; higher orders can

potentially provide stronger guarantees of exact recovery, but at the

cost of increased computational complexity. To enhance efficiency,

the authors have elaborately designed culling strategies[Zhang et al.

2023a] for diverse CCD scenarios. Nevertheless, these strategies still

fall short of meeting the real-time requirements of simulations(e.g.,

2 seconds for one pair of bicubic triangular patches).

Inclusion-based CCD. The most popular method for solving CCD

directly on parametric surfaces [Snyder 1992; Snyder et al. 1993;

Von Herzen et al. 1990] is based on inclusion functions and interval

analysis, also known as interval-based methods. Von Herzen et al.

[1990] were the first to combined interval methods with subdivi-

sion techniques to address CCD between parametric surfaces. They

developed a universal type of bounding volumes for 𝑺 (𝑢, 𝑣, 𝑡) based
on Lipschitz conditions. Snyder [1992] established the fundamental

framework for interval-based methods in computer graphics, and
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Fig. 2. Pipeline for one iteration of traditional inclusion-based CCD method (top) and our time-dependent inclusion-based CCD method (bottom). Given two
surface patches at 𝑡 = 0 and the velocities of their individual control points, the CCD problem, as defined in (a), seeks the earliest time of impact within the
time interval [0,Δ𝑇 ]. Under the linear trajectory assumption, the control points’ paths are represented by dashed black lines. For both methods, the main
sequential steps are: computing the inclusion functions (b), detecting inclusion intersection (c), and performing subdivision (d). In the traditional method, the
inclusion function for each patch is the bounding box of its swept volume within the time interval; while our method uses time-varying bounding box of the
patch at each time instance. In (b), these are represented as a single colored box and a series of colored sampling boxes, respectively. As highlighted by the
framed colored boxes in (c), the traditional method, by detecting overlaps between the inclusion functions, can only provide Boolean results. In contrast, our
method identifies the specific time interval of intersection, discarding the irrelevant intervals (grey boxes). Once potential interpenetration is detected, both
methods subdivide their parameter space along the indicated dimensions in (d) for further inspection.

Snyder et al. [1993] extended its application to CCD for parametric

surface. However, they discovered that the basic interval method

becomes exceedingly slow as precision requirements increase. To

mitigate this issue, they supplemented the constraints with tangency

conditions and used interval Newton methods to accelerate the pro-

cess. Despite these improvements, achieving acceptable accuracy

(e.g. 10
−6
) still takes considerable time. Additionally, tangency con-

ditions are only applicable when collisions occur within the surface,

necessitating separate treatments for collisions at boundaries and

corner vertices. Implementing the interval Newton’s method is com-

plex and demands careful handling of degenerate cases, especially

when the interval Hessian includes zero. Subsequent application

of interval-based methods to CCD problems for linear triangular

meshes[Redon et al. 2002; Wang et al. 2021] showed that collisions

between linear triangular elements involve only vertex-face (VF)

pairs or edge-edge (EE) pairs, both of which require solving only

3 parameters. While this reduces complexity, the interval-based

methods have not garnered significant attention due to their rela-

tively slow solving speed compared to other CCDmethods for linear

meshes. However, in recent years, Wang et al. [2021] revisited the

advantages of the interval-based method in avoiding false negatives

and carefully designed an interval-based framework for EE tests and

VF tests, demonstrating competitive performance with other state-

of-the-art methods. Crespel et al. [2024] explored contact detection

between high-order fibres via capsule-shaped inclusion functions

and highlighted the drawback of linearized elements in contact de-

tection, emphasizing that preserving high-order geometry helps

maintain smoothness contact responses. Nevertheless, for nonlin-

ear surfaces, inclusion-based CCD algorithms must contend with a

higher subdivision dimension, leading to a significant increase in

consumption time as accuracy requirements rise, making them too

slow to meet the demands of interactive simulation.

3 BACKGROUND
Inclusion-based methods have utilized interval analysis to address

the CCD problem for both linear meshes [Redon et al. 2002; Wang

et al. 2021] and parametric surfaces [Snyder et al. 1993; Von Herzen

et al. 1990]. We begin with a preliminary introduction to interval

arithmetic, drawing on foundational works [Snyder 1992; Snyder

et al. 1993], before explaining its application to the CCD problem.

3.1 Interval Arithmetic
A real interval is defined as

𝐼 = [𝑎, 𝑏] = {𝑥 |𝑎 ≤ 𝑥 ≤ 𝑏, 𝑥, 𝑎, 𝑏 ∈ R}. (5)

More generally, an n-dimensional vector-valued interval is defined

as

𝑰 = [𝑎1, 𝑏1] × · · · × [𝑎𝑛, 𝑏𝑛]
= {𝒙 |𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 , 𝑥𝑖 , 𝑎𝑖 , 𝑏𝑖 ∈ R,∀𝑖 (1 ≤ 𝑖 ≤ 𝑛)}. (6)

The width of such an interval is defined as

𝑤 (𝑰 ) = max

1≤𝑖≤𝑛
(𝑏𝑖 − 𝑎𝑖 ). (7)

For a vector function 𝒇 : R𝑛 → R𝑑 , given an 𝑛-dimensional interval

𝑰 ⊂ R𝑛
, its inclusion function □𝒇 maps the 𝑛-dimensional interval

ACM Trans. Graph., Vol. 43, No. 6, Article 223. Publication date: December 2024.
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ALGORITHM 1: Inclusion-based CCD solver

Input: two moving surfaces 𝑺1 (𝑢1, 𝑣1, 𝑡 ), 𝑺2 (𝑢2, 𝑣2, 𝑡 ) , the initial
interval 𝑰0.

Output: the earliest collision time 𝑡∗.
1 Initialize the priority queue 𝐻 ← ∅;
2 if IntersectionJudgement(𝑺1, 𝑺2, 𝑰0) then
3 push 𝑰0 into 𝐻 in asc. order by 𝑡 l;

4 end
5 while 𝐻 is not empty do
6 𝑰 ← pop the beginning element out of 𝐻 ;

7 if 𝑰 satisfies acceptance criterion then
8 return 𝑡 l;

9 end
10 {𝑰 sub} ←Subdivide 𝑰 into 2

5
sub-intervals;

11 foreach 𝑰 sub do
12 Calculate the subpatches 𝑺sub

1
, 𝑺sub

2
denoted by 𝑰 sub;

13 if IntersectionJudgement(𝑺sub
1

, 𝑺sub
2

, 𝑰 sub) then
14 push 𝑰 sub into 𝐻 in asc. order by 𝑡 l;

15 end
16 end
17 end
18 return∞;

to a 𝑑-dimensional interval that bounds the range of 𝒇 . Specifically,

𝒙 ∈ 𝑰 =⇒ 𝒇 (𝒙) ∈ □𝒇 (𝑰 ). (8)

If, as 𝑰 converges to a single point 𝒑, the inclusion function □𝒇 (𝑰 )
also converges to 𝒇 (𝒑), we say that □𝒇 is convergent.

3.2 Interval Arithmetic in CCD Problems
As discussed above, CCD for parametric surfaces is mathematically

formulated as a minimization problem defined over a 5-dimensional

interval

𝒙 ∈ 𝑰 = 𝐼𝑢1
× 𝐼𝑣1 × 𝐼𝑢2

× 𝐼𝑣2 × 𝐼𝑡
= [𝑢l

1
, 𝑢u

1
] × [𝑣 l

1
, 𝑣u

1
] × [𝑢l

2
, 𝑢u

2
] × [𝑣 l

2
, 𝑣u

2
] × [𝑡 l, 𝑡u], (9)

with the objective function and constraints defined as

𝑓 (𝒙) = 𝑡, (10)

𝑭 (𝒙) = 𝑺1 (𝑢1, 𝑣1, 𝑡) − 𝑺2 (𝑢2, 𝑣2, 𝑡) = 0. (11)

Using interval arithmetic, the exact constraint in Eq. 11 is relaxed

to an intersection condition between the inclusion functions of the

two surfaces, which is,

□𝑺1 (𝑰 ) ∩ □𝑺2 (𝑰 ) ≠ ∅. (12)

When addressing the CCD problem, an inclusion-based method

focuses on reducing the uncertainty in the position and timing of

potential collisions from the entire definition domain to a sufficiently

small interval. The algorithm pipeline is summarized in Alg. 1. Start-

ing from the initial interval 𝑰0 = [0, 1]×[0, 1]×[0, 1]×[0, 1]×[0,Δ𝑇 ],
the algorithm checks whether the inclusions corresponding to the

two surfaces intersect. If they do not intersect, a collision is not

possible, and the interval can be discarded. If an intersection is

detected, indicating a potential collision, the algorithm subdivides

ALGORITHM 2: Time-dependent inclusion-based CCD solver

Input: two moving surfaces 𝑺1 (𝑢1, 𝑣1, 𝑡 ), 𝑺2 (𝑢2, 𝑣2, 𝑡 ) , the initial
interval 𝑰0 = ˜𝑰0 × [0,Δ𝑇 ].

Output: the earliest collision time 𝑡∗.
1 Initialize the priority queue 𝐻 ← ∅;
2 [𝜏min, 𝜏max ] ←IntersectionPeriod(𝑺1, 𝑺2, ˜𝑰0 × [0,Δ𝑇 ]);
3 if [𝜏min, 𝜏max ] is not empty then
4 push ( ˜𝑰0 × [𝜏min, 𝜏max ] ) into 𝐻 in asc. order by 𝜏min;

5 end
6 while 𝐻 is not empty do
7 𝑰 = ˜𝑰 × [𝑡 l, 𝑡u ] ← pop the beginning element out of 𝐻 ;

8 if 𝑰 satisfies acceptance criterion then
9 return 𝑡 l;

10 end
11 { ˜𝑰 sub} ←Subdivide

˜𝑰 into 2
4
sub-intervals;

12 foreach ˜𝑰
subd

do
13 Calculate the subpatches 𝑺sub

1
, 𝑺sub

2
denoted by

˜𝑰 sub;

14 [𝜏min, 𝜏max ] ←IntersectionPeriod(𝑺sub
1

, 𝑺sub
2

, ˜𝑰 sub ×
[𝑡 l, 𝑡u ]);

15 if [𝜏min, 𝜏max ] is not empty then
16 push

˜𝑰 sub × [𝜏min, 𝜏max ] into 𝐻 in asc. order by 𝜏min;

17 end
18 end
19 end
20 return∞;

the intervals into smaller sub-intervals to refine the estimation of

the collision point. This refinement process involves dividing the

intervals along each dimension (e.g., time, spatial coordinates) and

recalculating the inclusions for these smaller intervals. The resulting

sub-intervals are then added to a priority queue, which is sorted

by the lower bound of □𝑓 = [𝑡 l, 𝑡u] in ascending order. This pro-

cess continues recursively until either all intervals in the queue are

discarded, indicating that 𝑰0 contains no feasible solution, or the

subdivision meets the acceptance criterion, thereby identifying a so-

lution to the problem. Since Eq. (12) provides a necessary condition

for the intersection of the two surfaces, the inclusion-based method

avoids false negatives (excluding the effects of floating-point errors),

ensuring there is no interpenetration. The priority queue’s orga-

nization ensures that the resulting solution is a global minimizer.

In practical implementation, the inclusion function for a surface

can be selected from various options, including, but not limited

to, bounding boxes and bounding spheres, as long as the chosen

function is convergent. As illustrated in the first row of Fig. 2, we

employ the bounding boxes of the sweeping volumes of 𝑺1 and 𝑺2
as their respective inclusion functions, □𝑺1 and □𝑺2. The acceptance
criterion [Snyder et al. 1993; Wang et al. 2021] is typically defined

as 𝑤 (𝑰 ) < 𝛿 , where 𝛿 is a specified precision tolerance. An alter-

native approach, proposed by Snyder et al. [1993] involves bound-

ing the surface inclusions such thatmax{𝑤 (□𝑺1 (𝑰 )),𝑤 (□𝑺2 (𝑰 ))} <
𝛿 . Wang et al. [2021] introduced a new criterion that estimates the in-

terval width in the co-domain. For simplicity, we adopt the criterion

𝑤 (𝑰 ) < 𝛿 in our implementation.

ACM Trans. Graph., Vol. 43, No. 6, Article 223. Publication date: December 2024.
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4 TIME-DEPENDENT INCLUSION-BASED CCD
While interval arithmetic in CCD ensures robust and accurate col-

lision detection, its inherent conservativeness and the high sub-

division dimension can lead to low computational efficiency. We

propose a novel paradigm based on time-dependent inclusion func-

tion. Instead of determining□𝑓 = [𝑡 l, 𝑡u] by subdividing the interval
along the 𝑡-dimension, we reformulate the constraints as functions

of 𝑡 , thereby computing □𝑓 from the constraints.

4.1 Time-Dependent Framework
Specifically, we re-define the CCD problem over a 4-dimensional

intervals, denoted by:

�̃� ∈ 𝑰 = 𝐼𝑢1
× 𝐼𝑣1 × 𝐼𝑢2

× 𝐼𝑣2
= [𝑢l

1
, 𝑢u

1
] × [𝑣 l

1
, 𝑣u

1
] × [𝑢l

2
, 𝑢u

2
] × [𝑣 l

2
, 𝑣u

2
], (13)

with the initial interval 𝑰0 = [0, 1] × [0, 1] × [0, 1] × [0, 1]. The tilde
notation indicates modified variables/intervals/inclusions within

the 4D parameter space. Each surface inclusion is then reformulated

as a continuous, time-dependent function □̃𝑺 (𝑰 , 𝑡), as shown in the

second row of Fig. 2. To verify the existence of a feasible domain

within 𝑰 , we check whether □̃𝑺1 (𝑰 , 𝑡) intersects □̃𝑺2 (𝑰 , 𝑡) and solve

for the feasible interval of □̃𝑡 , defined as:

□̃𝑡 = {𝑡 |□̃𝑺1 (𝑰 , 𝑡) ∩ □̃𝑺2 (𝑰 , 𝑡) ≠ ∅}. (14)

As demonstrated in Fig. 2, our method differs from the traditional

method in two significant ways: (1) Our continuous time-dependent

inclusion function tightly bounds the patch at each moment, as

oppsed to using a bounding box for the sweeping volume over the

entire time interval. (2) After determining the intersection of the

inclusion functions, the traditional method subdivides both spatial

and temporal dimensions, whereas our method directly identifies

the sub-time interval where the collision occurs, necessitating sub-

division only in the spatial dimensions. Although the per-iteration

computation of our method is higher, the total number of iterations

is significantly reduced, thereby enhancing the efficiency of CCD.

The pipeline of our CCD algorithm is summarized in Alg. 2, with

differences from the traditional method highlighted in blue.

A critical step in our CCD method is detecting when the two

time-dependent inclusion functions intersect, i.e., solving for the

time inclusion in Eq. (14). To address this, assuming the convex-hull

property and linear-trajectory motion, we design a new intersec-

tion detection algorithm tailored to our proposed time-dependent

inclusion functions, as detailed in the following subsections.

4.2 Time-Dependent Inclusion Functions
The tensor-product Bézier patch is awidely used geometric primitive

in CAD. In the following, we use Bézier patches to illustrate the

construction of our proposed time-dependent inclusion functions

and the necessary conditions for their intersection. This approach

also applies to other geometric primitives that satisfy the convex-

hull property and linear-trajectory motion.

A Bezier patch of order 𝑛 ×𝑚 can be expressed as:

𝑺 (𝑢, 𝑣) =
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐵𝑛𝑖 (𝑢)𝐵
𝑚
𝑗 (𝑣)𝒑𝑖 𝑗 , (15)

where 𝑢, 𝑣 ∈ [0, 1] are the parametric coordinates, 𝐵𝑛
𝑖
(𝑢), 𝐵𝑚

𝑗
(𝑣)

are the Bernstein basis functions, and 𝒑𝑖 𝑗 are the control points.

Assuming each control point moves at a constant speed during

the time step 𝑡 ∈ [0,Δ𝑇 ], the corresponding moving surface is

represented as:

𝑺 (𝑢, 𝑣, 𝑡) =
𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝐵𝑛𝑖 (𝑢)𝐵
𝑚
𝑗 (𝑣) (𝒑𝑖 𝑗 + 𝑡 ¤𝒑𝑖 𝑗 ), (16)

where ¤𝒑𝑖 𝑗 are the velocities of the control points.
According to the convex-hull property of Bézier patches, the axis-

aligned bounding box (AABB) of each patch can be determined

by projecting the control points onto each coordinate axis to find

the maximum and minimum extents in each direction. Therefore,

the AABB-based inclusion function at time 𝑡 for the moving patch

defined in Eq.(16) is given by:

□̃𝑺 (𝑰 , 𝑡) = {𝒙 |min

𝑖 𝑗
(𝒑𝑖 𝑗 + 𝑡 ¤𝒑𝑖 𝑗 ) ≤ 𝒙 ≤ max

𝑖 𝑗
(𝒑𝑖 𝑗 + 𝑡 ¤𝒑𝑖 𝑗 )}, (17)

where the inequality applies to each component of the vectors. The

necessary and sufficient condition for the collision of two AABB-

based inclusion functions at time 𝑡 is that their extents overlap along

all the axes. This condition is expressed as:

min

𝑖 𝑗
[(𝒑 (2)

𝑖 𝑗
+ 𝑡 ¤𝒑 (2)

𝑖 𝑗
) · 𝒆𝑘 ] ≤ max

𝑖 𝑗
[(𝒑 (1)

𝑖 𝑗
+ 𝑡 ¤𝒑 (1)

𝑖 𝑗
) · 𝒆𝑘 ], (18a)

AND

min

𝑖 𝑗
[(𝒑 (1)

𝑖 𝑗
+ 𝑡 ¤𝒑 (1)

𝑖 𝑗
) · 𝒆𝑘 ] ≤ max

𝑖 𝑗
[(𝒑 (2)

𝑖 𝑗
+ 𝑡 ¤𝒑 (2)

𝑖 𝑗
) · 𝒆𝑘 ], (18b)

where the superscripts (1) and (2) indicate which patch the control

points belong to, and 𝒆𝑘 ∈ {𝒆0, 𝒆1, 𝒆2} denotes the three standard
basis vectors in the world space. Within each min/max operator,

(𝒑𝑖 𝑗 +𝑡 ¤𝒑𝑖 𝑗 ) ·𝒆𝑘 describes the trajectory projection of the 𝑖 𝑗-th control

point onto the axis 𝒆𝑘 , which is a linear function with respect to 𝑡 .

Oriented bounding boxes (OBBs) typically provide tighter bounds

for patches than AABBs. For OBB-based inclusion functions, the in-

tersection condition follows the same mathematical form as Eq. (18),

with the only difference being the selection of 𝒆𝑘 . Let the axes of

the OBBs for the two Bezier patches be denoted as {ˆ𝒍 (1)
1

, ˆ𝒍 (1)
2

, ˆ𝒍 (1)
3
}

and {ˆ𝒍 (2)
1

, ˆ𝒍 (2)
2

, ˆ𝒍 (2)
3
} respectively. The vectors 𝒆𝑘s are the 15 axes

{ˆ𝒍 (1)
𝑖

, ˆ𝒍 (2)
𝑗

, ˆ𝒍 (1)
𝑖
× ˆ𝒍 (2)

𝑗
| 𝑖, 𝑗 ∈ {1, 2, 3}}, defined by the separating

axis theorem [Gottschalk 1996]. During implementation, instead of

computing {ˆ𝒍1, ˆ𝒍2, ˆ𝒍3} using the computationally expensive singular

value decomposition (SVD), we directly assign them to align with

the mapped directions of the parameter coordinates [Efremov et al.

2005] as follows:

𝒍 (𝑢) = [(𝑆 (1, 0) − 𝑆 (0, 0)) + (𝑆 (1, 1) − 𝑆 (0, 1))]/2, (19)

𝒍 (𝑣) = [(𝑆 (0, 1) − 𝑆 (0, 0)) + (𝑆 (1, 1) − 𝑆 (1, 0))]/2. (20)

Then, the OBB axes are:

ˆ𝒍1 = 𝒍 (𝑢), ˆ𝒍2 = 𝒍 (𝑢) × 𝒍 (𝑣), ˆ𝒍3 = ˆ𝒍1 × ˆ𝒍2 . (21)

For a moving patch, we use its intial shape at each time step to

compute its OBB axes and keep them fixed within that time step.

When excluding floating-point errors, the condition in Eq. (18) is

both (1) conservative, because the intersection between inclusion

functions is a sufficient condition for a collision between patches,
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ALGORITHM 3: Intersection Period

Input: two moving surfaces 𝑺1 (𝑢1, 𝑣1, 𝑡 ), 𝑺2 (𝑢2, 𝑣2, 𝑡 ) , the
candidate interval 𝑰 = ˜𝑰 × [𝑡 l, 𝑡u ].

Output: time interval [𝜏min, 𝜏max ] when the two inclusions

intersect.

1 Discretely represent 𝑺1 (𝑢1, 𝑣1, 𝑡 ) as {𝒑 (1)𝑖 𝑗
}𝑖 𝑗 and { ¤𝒑 (1)𝑖 𝑗

}𝑖 𝑗 ;
2 Discretely represent 𝑺2 (𝑢2, 𝑣2, 𝑡 ) as {𝒑 (2)𝑖 𝑗

}𝑖 𝑗 and { ¤𝒑 (2)𝑖 𝑗
}𝑖 𝑗 ;

3 Select bounding-box axes {𝒆𝑘 };
4 Initialize the set of non-intersection time intervals Γ ← ∅;
5 foreach 𝒆𝑘 do
6 Calculate the line set L1 ← {(𝒑 (1)𝑖 𝑗

+ 𝑡 ¤𝒑 (1)
𝑖 𝑗
) · 𝒆𝑘 }𝑖 𝑗 ;

7 Calculate the line set L2 ← {(𝒑 (2)𝑖 𝑗
+ 𝑡 ¤𝒑 (2)

𝑖 𝑗
) · 𝒆𝑘 }𝑖 𝑗 ;

8 Calculate the upper boundary B1 ← Max(L1, [𝑡 l, 𝑡u ]);
9 Calculate the lower boundary B2 ← Min(L2, [𝑡 l, 𝑡u ]);

10 Γ ← Γ
⋃
BoundaryIntersect(B1, B2, [𝑡 l, 𝑡u ]);

11 Calculate the lower boundary B1 ← Min(L1, [𝑡 l, 𝑡u ]);
12 Calculate the upper boundary B2 ← Max(L2, [𝑡 l, 𝑡u ]);
13 Γ ← Γ

⋃
BoundaryIntersect(B2, B1, [𝑡 l, 𝑡u ]);

14 end
15 𝜏min ←LB([𝑡 l, 𝑡u ]/Γ);
16 𝜏max ←UB([𝑡 l, 𝑡u ]/Γ);
17 return [𝜏min, 𝜏max ];

𝑡 𝑡 𝑡

Fig. 3. The process for solving a single inequality in Eq. 18. The linear
functions within the min function are represented by blue dashed lines,
while those within the max function are shown as orange dashed lines. We
first calculate the minimum function (bold blue contour) and the maximum
function (bold orange contour) respectively, and then identify the 𝑡 interval
where they intersect and the inequality fails (yellow range). The solution to
the inequality is the complement of this yellow range.

and (2) convergent, because the bounding box computed via control

points shrinks to the same point as the subdivision converges.

4.3 Inclusion Intersection Detection
The task of inclusion intersection detection involves identifying a

compact time interval [𝜏min, 𝜏max] within a given time range [𝑡 l, 𝑡u]
that encompasses all moments when the inequalities in Eq. 18 are

simultaneously satisfied across all directions 𝒆𝑘 .

For a specific direction 𝒆𝑘 , the expression {(𝒑
(𝛼 )
𝑖 𝑗
+ 𝑡 ¤𝒑 (𝛼 )

𝑖 𝑗
) · 𝒆𝑘 }

forms a collection of linear functions with respect to 𝑡 for all control

points 𝒑𝑖 𝑗 belonging to object 𝛼, 𝛼 ∈ {1, 2}, as illustrated by the

dotted lines of identical color in Fig. 3 (left). The min and max

operations on these dotted lines determine the lower and upper

boundaries, respectively, as depicted by the solid contours of the

same color in Fig. 3 (middle).

Therefore, analyzing when the inequality holds is equivalent to

checking when the lower boundary of one patch lies below the

upper boundary of the other patch. Apart from the scenario where

the lower boundary consistently remains below the upper boundary

throughout the entire time range, there may be instances where the

lower boundary intersects with the upper boundary, as illustrated

in Fig. 3 (right). Given that the min function is concave and the max

function is convex, the "lying-below" can only be violated within

a single connected interval. The exact moment when the lower

boundary crosses the upper boundary can be easily determined

through 2D line segment intersection detection.

In parctical implementation, by traversing all separation axes, we

obtain a collection of time intervals where at least one inequality

in Eq. 18 does not hold. The remaining subintervals within the

time range [𝑡 l, 𝑡u] are the moments when Eq. 18 holds, indicating

potentially intersections between the two inclusions. To maintain

simplicity and conservativeness, we use a single interval that tightly

encompasses all these subintervals as the final solution, denoted as

[𝜏min, 𝜏max]. This interval represents the period during which the

two patches under observation may collide during their movement.

The overall algorithm is shown in Alg. 3. Suppose the two patches

involved in the CCD problem are of order 𝑛1 ×𝑚1 and 𝑛2 ×𝑚2, with

the number of control points being 𝑁1 = (𝑛1 + 1) × (𝑚1 + 1) and
𝑁2 = (𝑛2 + 1) × (𝑚2 + 1) respectively. The time complexity of the

algorithm is𝑂 (𝑁1 log𝑁1+𝑁2 log𝑁2). Detailed implementation and

analysis are provided in the supplementary material.

To enhance the algorithm’s robustness against floating errors in

practical implementation, we adopt the following strategies: (1) we

extend the candidate time interval [𝑡 l, 𝑡u] by a small margin, such as

10
−6
, to ensure that the endpoints of the time interval are correctly

processed; and (2) we increase the intercept of each line within the

max function by one millionth to slightly raise the max-function

contour, and similarly adjust the min-function contour downward.

While these techniques do not provide a theoretical guarantee of

safety, they have proven effective in eliminating all false negatives

in practice, as demonstrated in the subsequent section.

5 RESULTS
To validate the efficiency, robustness and generality of our method,

we conducted a comprehensive series of validation tests and compar-

ison experiments. All experiments were performed in a single-thread

mode on a 16-core 4.5GHz AMD Ryzen(TM) 9 7950X desktop with

64 GB RAM.

5.1 Validation
We compare the performance of our method against two prevailing

CCD methods:

(1) The traditional inclusion-based method (abbreviated as Trad.)

described in Alg. 1. For the sake of fairness, we apply the same

subdivision strategy (bisecting all the parameter dimensions

in each iteration) and acceptance criterion (𝑤 (𝑰 ) < 𝛿) for

both Trad. and our method. Our implementation of Trad.

excludes the tangency conditions and the Interval Newton’s

method proposed by Snyder et al. [1993]. Comparisons are

performed using both AABB and OBB inclusion functions,

under varying precision tolerance 𝛿 = 10
−4, 10−5, 10−6.
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Table 1. Average time cost [ms] of 1000 random cases using traditional inclusion-based method (Trad.), SOSP and our method under different precision
tolerances. Experiments are conducted on triangular patches (T.) and quadrilateral patches (Q.) of order 1, 2, 3, respectively. The number of collision pairs (CP)
for each primitive setting is also reported.

Trad. (AABB) Ours (AABB) Trad. (OBB) Ours (OBB) SOSP

𝑑 CP 10
−4

10
−5

10
−6

10
−4

10
−5

10
−6

10
−4

10
−5

10
−6

10
−4

10
−5

10
−6

–

T.

1 468 8.15 13.48 19.57 18.00 32.70 49.70 3.45 4.93 6.85 4.26 5.51 6.68 175.02

2 776 159.07 1145.41 7748.46 215.16 1489.60 11934.78 61.20 374.81 3264.07 22.40 42.67 90.87 251.00

3 932 523.10 3138.51 26564.17 375.81 2610.75 19525.31 203.21 1226.84 9974.95 35.98 66.73 131.30 8755.73

Q.

1 670 21.38 99.53 836.18 21.93 83.16 443.23 12.70 44.04 619.46 5.00 9.72 22.13 309.35

2 933 333.06 2233.37 16196.34 205.02 1381.54 10934.02 133.04 891.13 6858.91 19.30 32.50 62.12 784.52

3 988 730.90 4875.23 35332.08 337.91 2336.47 17901.88 205.46 1363.95 10962.40 27.17 44.71 79.40 56056.00
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Fig. 4. The distribution of time costs for our method, the traditional
inclusion-based method (Trad.) and the SOSP method described in Zhang
et al. [2023a] across 1000 random cases. The SOSP is computationally ex-
pensive in all the cases. In contrast, our method handles 996 cases within 1
s and takes less than 0.5 s for most problems. The time cost of Trad. varies
significantly, with a maximum time consumption of 654 s.

(2) The SOSP method described in [Zhang et al. 2023a, §5.2]. The

CCD problem is formulated as CCD
2𝐷𝑎
𝑑1,𝑑2

, with [𝑑1, 𝑑2] chosen
as [4, 2], [4, 3] and [6, 4] for triangular and quadrilateral patch
of order 1, 2, 3 respectively. The code runs on matlab R2023b

and requires the yalmip v20230622 and mosek 10.1 libraries.

Only the runtime of the mosek solver is reported, as done

in [Zhang et al. 2023a]. The numerical solver employed by

the SOSP method to solve the converted SDP does not involve

a convergence threshold, so the SOSP method provides no

guarantee of solution accuracy.

We test all the three methods using various geometry primi-

tives, including triangular patches and quadrilateral patches of first,

second and third order. For each type of geometry primitive, we

randomly generate 1000 cases of {𝒑 (1)
𝑖 𝑗

, 𝒑 (2)
𝑖 𝑗

, ¤𝒑 (1)
𝑖 𝑗

, ¤𝒑 (2)
𝑖 𝑗
} according

to a uniform distribution within the range [−1, 1]. To further en-

courage collision occurrences, we also randomly select a direction

𝒅 from the same distribution, adding 𝒅 to each vector of 𝒑 (1)
𝑖 𝑗

and

¤𝒑 (2)
𝑖 𝑗

, and subtracting 𝒅 from each vector of 𝒑 (2)
𝑖 𝑗

, ¤𝒑 (1)
𝑖 𝑗

.

We report the time costs of the three methods under different

settings in Table 1. Although both the traditional method and our

method exhibit rapid solving speeds with linear patches, the time

consumption of the traditional method increases significantly as

accuracy requirements rise(e.g. from 0.2 s to 10 s on third-order
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Fig. 5. The distribution of the constraint residuals for our method, the
traditional inclusion-based method (Trad.) and the SOSP method described
in Zhang et al. [2023a] across 1000 random cases.

quadrilateral patches with OBB-based inclusions when using tol-

erance of 10
−4

and 10
−6
). In contrast, our method shows a more

moderate increase in time consumption (from 0.027 s to 0.079 s for

tolerance of 10
−4

and 10
−6

under the same setting), demonstrating

an acceleration factor ranging from 36x to 138x with OBB-based

inclusions. Additionally, since OBB gives a tighter description of

patches, OBB-based methods outperform AABB-based methods

across all the experiment settings. The acceleration effect is par-

ticularly evident in time-dependent inclusion-based method, as a

tighter description facilitates faster localization and convergence

to the collision point. At a precision of 10
−6
, the SOSP method,

when compared with the traditional method, demonstrates much

faster solving speeds on second-order surfaces but slower perfor-

mance on third-order surfaces, as it requires a higher order of SOS

polynomials to enhance the accuracy of its solutions. Furthermore,

our method achieves a considerable speedup over all surface prim-

itives compared to the SOSP method. Notably, as shown in the

second to last column, our method is the only one among the three

that consistently achieves a high solving speeding (approximately

0.1 s) for nonlinear patches at a prevision level commonly used in

simulations(𝛿 = 10
−6
).

We further conduct an in-depth study of the three methods with

the tolerance 𝛿 = 10
−6

on third-order quadrilateral patches, using

OBB as the inclusion function.

Time cost. As shown in the histogram in Fig. 4, we present detailed

statistics on the time costs for the three methods. The SOSP is
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computationally expensive in all the cases, with time cost exceeding

30 s. In contrast, our method handles 996 cases within 1 s and takes

less than 0.5 s for most problems. The maximum time consumption

for any case using our method is 2.6 s. The time cost of Trad. varies

significantly from case to case, with some cases requiring a large

amount of time, the maximum time consumption reaches 654 s.

Worst cases. The most time-consuming cases for the traditional

method occur when the two surfaces have non-local manifold con-

tact. The large potential contact region forces the algorithm to

extensively subdivide the 5D space across the entire manifold to

narrow down to the desired solution, as reported by Snyder et al.

[1993]. However, this issue does not arise in our method, as the

accurate collision time is determined through algebraic calculations

rather than bisection. Cases that are challenging for our approach

(taking tens of seconds per case) typically occur when a section of

the parameter coordinates maps to a tiny local area in the world

space. In these instances, the bounding boxes do not shrink suffi-

ciently with subdivision if extremely high accuracy (𝛿 ≤ 10
−8
) is

required. An illustrative example of this scenario is a degenerate

patch where different control points locate at the same position.

Fortunately, these situations are uncommon in simulation unless

intentionally designed.

Constraint residual. To better compare the precision of different

methods, we calculate the L2-norm residual of the constraints |𝑭 |2,
which represents the actual distance between the earliest collided

point pair in the world space. Its residual distribution is presented in

Fig. 5. As shown, SOSP provides no guarantees on the upper bound

of residuals. The residuals of inclusion-based methods align with the

magnitude of the precision threshold 𝛿 = 10
−6

as we set, consistent

with our generation rules. In terms of satisfying the constraints, our

method generally provides more precise solutions than tradition

method under the same tolerance.

Convergence curves. To further demonstrate the accuracy and

convergence of our method, we examine the absolute errors be-

tween the numerical solutions at different tolerances and the ex-

act solutions. The exact solutions were obtained by solving 1000

cases with a precision of 𝛿 = 10
−10

using our method, with an

average time cost of 5.8 s. In all the 988 cases where collisions

occurred, We compute the average errors for 𝐸𝑡 = |𝑡∗ − 𝑡∗ | and
𝐸𝑢𝑣 = | (𝑢∗

1
, 𝑣∗

1
, 𝑢∗

2
, 𝑣∗

2
) − (𝑢∗

1
, 𝑣∗

1
, 𝑢∗

2
, 𝑣∗

2
) |2 respectively, where a hat

denotes the numerical value of a variable. As shown in Fig. 6, the

errors for both metrics decrease at least linearly with the tolerance.

Additionally, the numerical solutions obtained using our method

provide a closer approximation to the true solution than those from

the traditional method under the same tolerance. The solving pro-

cess of the traditional method with a precision of 𝛿 = 10
−7

was

terminated early due to the excessive memory usage.

5.2 Simulation Examples
To demonstrate the efficacy of our CCD method within real simula-

tion pipelines, we integrate it into an elastodynamic simulator de-

signed for bicubic Hermite patches [Ni et al. 2024]. During collision

detection, these patches are equivalently converted into third-order

quadrilateral Bézier patches. Upon detecting collisions, the system
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Fig. 6. Convergence curves of the average absolute errors the numerical
solutions at different tolerances and the exact solutions for 𝐸𝑡 = |𝑡∗−𝑡∗ | and
𝐸𝑢𝑣 = | (�̂�∗

1
, 𝑣∗

1
, �̂�∗

2
, 𝑣∗

2
) − (𝑢∗

1
, 𝑣∗

1
,𝑢∗

2
, 𝑣∗

2
) |2 respectively.The exact solutions

were obtained by solving 1000 cases with a precision of 𝛿 = 10
−10 using our

method.

reverts to the earliest time of impact and updates the velocities of

the nodes using an impulse-based solver [Harmon et al. 2008; Ni

et al. 2024]. We devised two scenarios to evaluate performance, and

the results indicate that our method operates quickly and robustly,

delivering efficient and stable outcomes without interpenetration.

Cloth draping on a teapot. As illustrated in Fig. 7, a square sheet

of cloth composed of 20×20 patches falls onto a teapot composed of

32 patches under the influence of gravity, eventually sliding down

along the handle. As can be seen in the supplementary video, the

simulation runs smoothly and stably at a 2ms time step, with no

visible interpenetration. To comprehensively evaluate our CCD

method, we select 5 representative frames from the simulation,

each corresponding to a subfigure in Figure 7. The time costs for

performing CCDdetection on these frames using both the traditional

method and our method across five commonly used time steps

Δ𝑇 are reported in Table 2. In the first two frames, 94 and 113,

the cloth falls toward the teapot and comes into contact with the

spout and the body, resulting in a relatively high relative speed

between the two objects. Consequently, the inclusion generated by

the traditional method (formulated as the swept volume of the patch)

becomes an overly loose estimate, necessitating a large number of

subdivision iterations and a long solution time. This drawback is

further magnified as the time step increases, leading to a sharp rise

in detection time. In contrast, our method uses a more accurate

time-dependent inclusion for intersection detection, enabling it to

operate efficiently even under high relative speeds and larger time
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94 113 278 356 389

Fig. 7. A square sheet of square cloth (20 × 20 bicubic Hermite patches) drapes on a teapot (32 bicubic Hermite patches) under gravity, eventually sliding down
along the handle. The simulation runs smoothly and stably at a 2 ms time step, with no visible interpenetration between cloth and teapot.

Fig. 8. A square sheet of cloth (10 × 10 bicubic Hermite patches) is pinned at two diagonal corners and drapes under gravity. The pinned points are then moved
along the opposite boundaries to the other pair of diagonal corners. Throughout the process, the cloth deforms smoothly with no locking and interpenetration.

steps, thereby achieving significant speed improvements compared

to the traditional method. In frames 278 and 356, the cloth’s primary

movement shifts to sliding along the teapot, leading to a smaller

relative velocity along the normal direction of the contact surface,

making it easier for the traditional method to resolve. However, our

method remains slightly faster. In frame 389, when the cloth and

teapot separate, only a few iterations are needed to conclude there is

no collision. Therefore, the higher computational cost per iteration

of our method makes it slower in this scenario. Nonetheless, this

cost is relatively minor compared to other frames and can be largely

mitigated through broad-phase culling.

Cloth pinned by two corners. As shown in Fig. 8, a square sheet of

cloth consisting of 10 × 10 patches is suspended under gravity with

its two diagonal corners pinned. Once the cloth reaches a stable

state, we slide the pinned points along the opposite boundaries to

the other pair of diagonal corners. To detect self-collisions within

the cloth, we apply our CCD method between non-adjacent patches,

while ignoring potential collisions between adjacent patches and

within individual patches. As demonstrated in the supplementary

video, our method not only manages collisions between these high-

order patches generated during patch sagging, but also reliably

detects and handles collisions at the boundaries during fixed-point

sliding. Unlike sampling-based CCD strategy [Ni et al. 2024], which

can miss boundary collisions leading to self-penetration, our ap-

proach effectively avoids these issues without requiring the special

treatment needed in the method of Snyder et al. [1993].

5.3 Other Examples
Applications on EE tests and VF tests. CCD between linear trian-

gular surfaces is commonly conducted by EE tests and VF tests,

both of which are three-variable degenerate cases of CCD between

parameter surfaces. We implement both our method and the tra-

ditional method for these tests and compared their efficiency and

Table 2. The statistic of time costs for performing CCD detection on the
selected frames as shown in Fig. 7 using both the traditional method and
our method across five commonly used time steps Δ𝑇 .

Δ𝑇 0.001 s 0.002 s 0.005 s 0.01 s 0.02 s

Trad. (OBB)

Fr. 94 14.43 14.83 157.82 181.02 148.26

Fr. 113 8.94 5.13 4.97 13.77 339.65

Fr. 278 4.30 4.55 4.81 4.91 5.33

Fr. 356 5.80 7.31 9.13 12.32 13.36

Fr. 389 0.04 0.04 0.04 0.04 0.04

Ours. (OBB)

Fr. 94 1.72 1.73 1.89 1.90 1.99

Fr. 113 1.10 1.10 1.10 1.11 1.33

Fr. 278 2.13 2.16 2.18 2.18 2.19

Fr. 356 1.08 1.08 1.08 1.14 1.36

Fr. 389 0.34 0.29 0.30 0.32 0.31

accuracy on the large-scale benchmark datasets proposed by Wang

et al. [2021]. We construct the inclusion functions by calculating

bounding boxes rather than directly using interval arithmetic, mak-

ing our implemented of the traditional method more comparable

to the method proposed by Wang et al. [2021] than their imple-

mented IRF method. The convergence tolerance was set to 10
−6
, as

in Wang et al. [2021]. As shown in Table. 3, our method produces

no false negatives in any of the cases and maintained a low number

of false positives. For the handcrafted dataset, which contains a

comprehensive range of collision cases, including various degen-

erate scenarios and scenarios with multiple solution, our method

performs as well as the Trad. method in VF tests and outperforms it

in EE tests, where more challenging cases, such as parallel edges,

may occur. Our proposed method is the first inclusion-based method

to achieve performance that is competitive with other numerical

root-finding methods on this dataset. For the simulation dataset,
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Table 3. The statistics of the average runtime in µs (t), number of false
positive (FP), and number of false negative (FN) for both of our method
and the traditional method (Trad.) on the large-scale benchmark datasets
proposed by Wang et al. [2021].

Trad. (AABB) Ours (AABB) Trad. (OBB) Ours (OBB)

Handcrafted Dataset (21K) – Vertex-Face CCD

t 116.18 67.31 5.44 7.08

FP 41 49 94 59

FN 0 0 0 0

Handcrafted Dataset (34K) – Edge-Edge CCD

t 387.28 57.27 1097.42 3.85

FP 91 101 300 117

FN 0 0 0 0

Simulation Dataset (18M) – Vertex-Face CCD

t 0.41 2.17 0.17 1.63

FP 2 2 4 4

FN 0 0 0 0

Simulation Dataset (41M) – Edge-Edge CCD

t 1.17 4.60 3.66 1.55

FP 9 9 18 38

FN 0 0 0 0
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2
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Fig. 9. Solution to the torus-torus CCD problem. We illustrate the true
collision manifold as a grey circle in the collision plane, with detected
collision points marked in blue. The solution separation distances are set to
1 and 0.1 in the left and right figures, respectively.

our method performs comparably to the Trad. method in EE tests

but falls behind in VF tests. This is likely because, in real simulation

applications, VF tests are less prone to the same challenges found in

handcraft data. Additionally, the simplicity of the calculation and the

low dimensionality of the subdivision parameter space contribute

to the faster performance of the traditional method.

NURBS patches. (Trimmed) Non-Uniform Rational Bézier Splines

(NURBS) surfaces are widely used in CAD applications due to their

ability to represent complex shapes with high flexibility and precise

local control. A NURBS of order 𝑛 ×𝑚 can be divided into a finite

number of rational Bézier patches of same order without any loss

of precision through knot insertion [Efremov et al. 2005; Piegl and

Tiller 1995]. When the weights assigned to the control points of a

rational Bézier surface are non-negative, this surface satisfies the

convex-hull property. Concequently, we can apply our proposed

CCD framework to rational Bézier patches in a manner similar to

polynomial Bézier patches, where the position of control points are

derived from the homogeneous coordinates. As shown in Fig. 1, we

solve a multi-frame CCD problem involving a bunny composed of

292 linear triangular patches and a torus composed of 16 converted

second-order rational Bézier quadrilaterals. During implementation,

We approximate their trajectory using piecewise linear motions

with a time step of Δ𝑇 = 0.02 s. Our method takes 0.66 s to solve

the CCD problem in the time step when the two objects come into

collision. Our method can not handle rational Bézier patches with

negative weights, as the convex hull properties no longer holds in

such case. Given that this type of patch can exhibit unusual and

non-intuitive behaviors compared to patches with only positive

weights, we consider this topic to be beyond the scope of this paper.

Non-isolated point collision manifold. Our method can be inte-

grated into the framework of multi-point collision detection [Snyder

et al. 1993] to accurately describe non-isolated point contact man-

ifolds. As shown in Fig. 9, when a torus drops onto another torus

below it, a circular contact manifold forms. We set the simultaneity

threshold to 1ms and adjust the solution separation distance to

achieve multi-point characterizations with varying density. Within

Δ𝑇 = 1 s, our method takes 0.49 s to find 12 distinct points with a

separation distance of 1, and 1.25 s to find 124 distinct points with a

separation distance of 0.1.

6 CONCLUSIONS AND DISCUSSIONS
We propose a time-dependent inclusion-based framework that effi-

ciently and robustly addresses the problem of CCD between para-

metric surfaces satisfying the convex-hull property and the linear-

trajectory assumption. The core of our framework is a newly devel-

oped model of inclusion functions, which represent the inclusion of

a moving surface as a time-dependent function, along with an inte-

grated intersection detection algorithm. These components provide

a precise estimate of the surface trajectory and enable rapid com-

putation of the time period containing potential collisions, thereby

eliminating the need for time interval bisection to pinpoint the

collision time. Our method demonstrates scalability in meeting in-

creasing accuracy requirements compared to traditional approaches,

achieving state-of-the-art performance in CCD problems involving

various geometric primitives.

While our framework exhibits zero false negatives in our experi-

ments, its resilience to floating-point errors remains uncertain. To

enhance the theoretical safety of the algorithm, we plan to improve

our method by incorporating exact geometric computation (EGC)

paradigms [Yap 2004], as done for triangle-mesh CCD [Brochu

et al. 2012; Tang et al. 2014] and boundary evaluation of curved

solids [Keyser et al. 2002], or deriving error bounds via forward

error analysis [Wang 2014; Wang et al. 2015]. Additionally, our

framework does not accommodate curved trajectories, such as rigid

body rotation, where the inclusions intersection detection involves

testing nonlinear 2D boundary contours, which exceeds the current

capability of our algorithm. promising direction is to adaptively
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linearize the curved trajectory and approach the real solution in-

crementally, referring to the additive CCD method [Li et al. 2021]

and its adaptation in rigid body simulation [Ferguson et al. 2021].

Moreover, our framework faces challenges when addressing self-

collisions within a single high-order patch and between adjacent

patches. To overcome this problem, we intend to investigate contin-

uous self-collision detection scheme tailored to parametric surfaces

and integrate them into our framework.
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